
1

Peppermint Data Binding

Peppermint Data Binding is a lightweight data binding framework for Unity. It provides a simple

and easy way for Unity games to utilize data binding.

Features
• Support OneWay, TwoWay and OneWayToSource binding modes.

• Support data conversion.

• Support binding to nested properties.

• Support binding to collections.

• Support dynamic binding.

• Support collection view.

• Support command.

• Support uGUI and NGUI.

• Optimized for performance.

• Support JIT/AOT compilation (iOS, Android, webGL).

• Editor tools to make data binding development easier.

• Model-View-ViewModel ready.

• Full source code included.

Data Binding Overview
Data binding is the process that establishes a connection between the application UI and

business logic. If the binding has the correct settings and the data provides the proper

notifications, then, when the data changes its value, the elements that are bound to the data

reflect changes automatically.

Data Binding Concepts
Each binding always follows the model illustrated by the following figure.

As illustrated by the above figure, data binding is essentially the bridge between your binding

target and your binding source. The figure demonstrates the following concepts:

Target Object Source Object
Binding Object

Target

Property

Source

Property

2

• Typically, each binding has these four components: a binding target object, a target

property, a binding source and source property. For example, if you want to bind the

content of a UI.Text to the Name property of a Player object, your target object is the

UI.Text, the target property is the text property, the source property is Name, and the

source object is the Player object.

• The binding source object and binding target object can be any CLR object.

• Peppermint data binding only support properties. Most Unity components can be

manipulated by their properties, which make them available for binding targets. If

target object does not have proper property you need to create an adaptor to wrap the

operation into property.

To enable your binding target properties to automatically reflect the dynamic changes of the

binding source, your class needs to implement INotifyPropertyChanged interface.

Direction of the Data Flow
The data flow of a binding can go from the binding target to the binding source (for example,

the source value changes when a user edits the value of a InputField) and/or from the binding

source to the binding target (for example, your Text content gets updated with changes in the

binding source) if the binding source provides the proper notifications. The framework currently

supports the following different types of data flow:

OneWay
OneWay binding causes changes to the source property to automatically update the target

property, but changes to the target property are not propagated back to the source property.

TwoWay
TwoWay binding causes changes to either the source property or the target property to

automatically update the other.

OneWayToSource
OneWayToSource is the reverse of OneWay binding; it updates the source property when the

target property changes.

Note that although the underlying Binding object supports two-way binding mode, the built-in

two-way binders use a simplified approach to implement two-way data flow.

Data Conversion
If the source and target property are not the same type, the data binding will use the converter

to do the type conversion. When you create the binding object, you can specify how to handle

the type conversion. The framework support 3 different conversion modes:

• None

Set to none if you want to disable the type conversion.

• Parameter

3

Use the specified data converter.

• Automatic

Let the binding object automatically choose the best convertor when binding.

Usually, the binding object will use automatic conversion mode. If the source type can be

converted to target type, the binding object will set the value to target directly. Otherwise it will

find a converter in ValueConverterProvider by the source type and the target type.

There are two types of converters: general converters and named converters. General converter

is associated with unique type pair, which includes the source type and target type. The named

converter is associated with a unique name.

Note that only one general converter can be associated with a type pair. If you need multiple

converters which handle the same source type and target type, you can add them as named

converters. E.g. the SpriteNameConverter is added as a named converter.

The framework has some built-in converters, which can handle most of the type conversion for

you.

Collection Binding
In Peppermint data binding, binding to a collection object is also supported. For example, you

can use scroll view to display a data collection. To establish a collection binding, you use the

CollectionBinding object. The CollectionBinding has three components: a binding source, a

source property, and the target object.

The above figure illustrated the model in collection binding. The CollectionBinding monitors the

changes of source collection and manage the order of view objects. When an item is added, it

creates a new view object from the target IViewFactory and binds the view to the item. When

an item is removed, it releases its view object and unbinds it.

The source property can be any collection that implements the IEnumerable interface. However,

to set up dynamic bindings so that insertions or deletions in the collection update the UI

automatically, the collection must implement the INotifyCollectionChanged interface. This

interface exposes an event that should be raised whenever the underlying collection changes.

Target Object

(IViewFactory)

Source Object CollectionBinding Object

SourceProperty

(IEnumerable)

4

Peppermint data binding provides the ObservableList<T>, which is a built-in implementation of

INotifyCollectionChanged interface.

Folder Structure

• Doc

Documentation for peppermint data binding.

• Editor

Editor assets include icons, templates.

• Examples

Include all tutorials and examples.

• Extensions

Third-party add-on extensions.

• Scripts

Data binding source code and editor source code.

• Settings

Settings for edtior tools. It’s created when you first launch the editor tool.

The examples folder contains assets and script files, these script files will be compiled into your

game. To reduce the build size, you can remove this folder after completing the tutorials.

Class Overview

Binder
Binder is the MonoBehaviour where you setup the binding parameters in Unity. It creates the

underlying binding objects internally. The framework contains some commonly used binders.

Depending on their usage, there are categorized in

• Selector

Selector is used to activate targets based on the source value.

• Setter

Setter set the specified value to target property based on the source value.

• Getter

Getter set the specified value to source property.

• Binder

5

General binder (one-way), bind target property to a binding source with specified source

path.

• Two-way Binder

Two-way binder, bind target property to binding source and listen for UI changes, if the

UI changes, new value is set to source property.

You can easily create your own binder. Binder is just a MonoBehaviour, it creates the binding

object with specified parameters and handles the adding and removing of created binding

object with associated DataContext. See “JoystickBinderExample” for more information.

BindingManager
The core of data binding. It manages all source objects and registered DataContext objects.

DataContext
DataContext component is the place where the binding source object being specified.

DataContextRegister
Register data context to BindingManager with required source name.

CollectionView
CollectionView allows display the collection based on sort and filter, all without having to

manipulate the underlying source collection itself.

Commands
Actions or operations that the user can perform through the UI are typically defined as

commands. Commands is used in ButtonBinder.

Converter
The framework has 3 built-in value converters:

• DefaultConverter handles primitive type conversion.

• ImplicitConverter do the type conversion by calling the implicit operator. It supports all

built-in implicit operators, e.g. Vector2/Vector3, Color/Color32, etc.

• SpriteNameConverter converts string to sprite.

You can create your own value converter, just implement the IValueConverter interface and add

it to ValueConverterProvider. See “HtmlColorConverterExample” for more information.

Tutorial

Hello Data Binding
Here is a simple example to demonstrate how to use this framework. You can follow the

instructions, and make yourself familiar with the data binding workflow. In this example, we

want the UI display a simple message string.

6

Step A
First, we design the Model and determine which fields it should have. We create a new class

which derived from BindableMonoBehaviour, and add a single string field “message”.

Then, we create a property “Message” to encapsulate this field. We must use this property to

set its value.

public class HelloDataBinding : BindableMonoBehaviour
{
 private string message;

 public string Message
 {
 get { return message; }
 set { SetProperty(ref message, value, "Message"); }
 }
}

Next, we need to add this object to BindingManger, so the DataContext can find this source by

its name. After we have done with this source, we need to remove it from BindingManager.

void Start()
{
 Message = "Hello, DataBinding!";

 // add current object as binding source
 BindingManager.Instance.AddSource(this, typeof(HelloDataBinding).Name);
}

void OnDestroy()
{
 // remove source
 BindingManager.Instance.RemoveSource(this);
}

We give the Message a literal string in Start method. That’s all the code we need to write.

Step B

Next we need to create a UI for this model. You can design your UI in your own way, here we

create the simplest one. We create a Panel and add a Text under the panel. Tweak the size and

color, and now the UI is ready for data binding.

7

Step C

We need to add data binding components to make the UI support data binding. First, add a

TextBinder to “Text” GameObject. The TextBinder will create a binding object, the target object

is the TextBinder itself, the source path is “Message” and the source object will be the

“HelloDataBinding”.

Then add DataContext and DataContextRegister to Panel node, and set required source to

“HelloDataBinding”. The required source must match the name we specified in AddSource

method, otherwise the DataContext could not be bound with the source.

Step D

The last step, we need to add a HelloDataBinding object to the scene. Create a new

GameObject, rename it to HelloDataBinding or any name you like, and add a HelloDataBinding

component to it.

OK, let’s hit the play button. If everything is setup correctly, you will see the text changed to

what we set in the code. Congratulations, you have completed the first tutorial.

8

The first tutorial is quite simple, it demonstrates the basic workflow of data binding.

1. In step A, you write the code to define the class, which is used as the binding source.
2. In step B, you create the UI, which is the view of your model. No data binding is involved

in this step.
3. In step C, you add the data binding components to the UI.
4. In step D, you add the binding source object.

How it works
When you hit the play button, the following things will happen in their Start method.

• The HelloDataBinding added itself to the BindingManager.

• The TextBinder find a DataContext on its ancestor, create a binding object and add it to
the DataContext.

• The DataContextRegister add the DataContext object to BindingManager.

Next the BindingManager checks if the required source has been added. If so, the

BindingManager binds this source to the target DataContext. Then the DataContext binds the

source to all binding objects. Finally, the binding object registers the event in the source, and

update the target property with the source value.

When you stop the game, the following things will happen in their OnDestroy method.

• The HelloDataBinding removes itself from the BindingManager.

• The TextBinder removes the binding object from its DataContext.

• The DataContextRegister removes the DataContext from BindingManager.

When the source/DataContext is removed from BindingManager, it will unbind the source from

its associated DataContext. Then the DataContext itself will unbind the source for all binding

objects. When the binding object is removed from DataContext, DataContext will check if the

binding object is bound, if so it will unbind the binding object.

9

This is a brief introduction to the internal work of data binding, for more information you can

check the source code.

Data binding vs no data binding
Because the view does not dependent on any Model/ViewModel, the UI can run without the

HelloDataBinding source. We can verify it by disabling the HelloDataBinding GameObject. Hit

the play button, the game will run without any error. The Model/ViewModel is unaware of the

view, so the Model/ViewModel can run without any View. We can disable the Panel object, hit

the play button again, and there is no error. That’s the key feature of MVVM design pattern, a

clean separation between application logic and the UI will make an application easier to test,

maintain, and evolve.

For example, we want to make a better UI for this model. Once the UI is complete, all we need

to do is step C, add data binding components. After that, your new UI is ready to replace the old

view.

Without data binding, we need add a UI.Text public field in code, and set the reference in Unity

(Or some indirect way to find the UI.Text). We use this field to update the text property of

UI.Text. If we create a new UI, we must replace the reference with new one. It is okay for a

simple UI, but it is time-consuming process for a complex UI.

If we want to extend the model to support two UI, both need to display the same Message.

Without data binding, we need to modify the code to change the UI.Text field into two UI.Text

fields or an array, then change the code where update the text and setup UI.Text reference in

Unity. With data binding, we do not need to change any code. You can try it yourself, just

duplicate the Panel, and adjust the position of the new Panel. Hit play button, it works with no

problem.

10

The data binding only concerned about the source path, if the path name matches, any object

can be a binding source. A view can be bind to a different type, the type does not need to inherit

from the specified class or interface, just need compatible properties.

Hello Collection Binding
The first tutorial introduces the basic of peppermint data binding. In the second tutorial, we will

demonstrate how to setup the collection binding. It will also shows how to handle button clicks.

In this tutorial, we need a scroll view, it will display a list of items. The UI of the item contains a

name text and a button, if you click the button, it will remove this item from list. We also need

two buttons, one button to remove all items in the list, and the other to add a new item to the

list.

Step A
In this tutorial, we need create two classes. A simple Item class that represents the item in the

list. The HelloCollectionBinding class is the view model class which contains an item list and

methods for manipulating the list. Here we define the Item class as a nested class within the

HelloCollectionBinding class.

public class Item : BindableObject
{
 private string name;
 private ICommand removeCommand;

 public string Name
 {
 get { return name; }
 set { SetProperty(ref name, value, "Name"); }
 }

 public ICommand RemoveCommand
 {
 get { return removeCommand; }

11

 set { SetProperty(ref removeCommand, value, "RemoveCommand"); }
 }
}

The Item class only has two properties, a Name property and a RemoveCommand property. The

type of Name property is string, which is the name of the item. The type of RemoveCommand

property is ICommand, we'll explain the ICommand later.

Next we need create a collection of items, as mentioned before the collection type must

implement the INotifyCollectionChanged interface, so we use the built-in ObservableList to

define the item list. The following code shows the list field and its property.

private ObservableList<Item> itemList;

public ObservableList<Item> ItemList
{
 get { return itemList; }
 set { SetProperty(ref itemList, value, "ItemList"); }
}

HelloCollectionBinding class need provide methods to manipulate the list: RemoveItem method

removes the specified item from the list, AddNewItem method creates a new item object and

add it to the list.

public void RemoveItem(Item item)
{
 itemList.Remove(item);
}

private void AddNewItem()
{
 // create new item
 var newItem = new Item();
 newItem.Name = string.Format("Item {0:D02}", nextIndex++);

 // set command
 newItem.RemoveCommand = new DelegateCommand(() => RemoveItem(newItem));

 // add to list
 itemList.Add(newItem);
}

In the Start method, we create the item list and add some items to the list. At the end of the

Start method, we add current class instance as a binding source. In the OnDestroy method, we

remove current instance from BindingManager.

void Start()
{
 itemList = new ObservableList<Item>();

 // create items
 for (int i = 0; i < initCount; i++)
 {
 AddNewItem();
 }

12

 // add current object as binding source
 BindingManager.Instance.AddSource(this, typeof(HelloCollectionBinding).Name);
}

void OnDestroy()
{
 // remove source
 BindingManager.Instance.RemoveSource(this);
}

To handle the button click, we add two commands, one for clearing the item list and the other

for adding a new item to the list. The definition of ICommand property is the same as normal

bindable property, the only difference is the field type.

private ICommand clearCommand;
private ICommand createCommand;

public ICommand ClearCommand
{
 get { return clearCommand; }
 set { SetProperty(ref clearCommand, value, "ClearCommand"); }
}

public ICommand CreateCommand
{
 get { return createCommand; }
 set { SetProperty(ref createCommand, value, "CreateCommand"); }
}

In data binding, actions or operations that the user can perform through the UI are typically

defined as commands. Usually, command will be invoked as a result of button click. The

ICommand interface defines an Execute method, which encapsulates the operation itself, and a

CanExecute method, which indicates whether the command can be invoked at a particular time.

public interface ICommand
{
 // Return true if command can be executed, otherwise return false
 bool CanExecute();

 // Execute command
 void Execute();
}

You do not need to implement the ICommand interface, the peppermint data binding has a

built-in implementation called DelegateCommand. The DelegateCommand class encapsulates

two delegates that each reference a method implemented within you class.

In the Start method, we create two DelegateCommand objects, and specify the delegate for

Execute method. The canExecute delegate is optional, if not specified the command is always

executable.

// create commands
clearCommand = new DelegateCommand(() => itemList.Clear());
createCommand = new DelegateCommand(AddNewItem);

13

You can use lambda expression to specify execute and canExecute delegate. Use lambda

expression is recommended, because both execute and canExecute delegate has no parameters.

If the method you specified need parameters, you can use closure to capture extra parameters

when you create the DelegateCommand.

// create new item
var newItem = new Item();
...
// set command
newItem.RemoveCommand = new DelegateCommand(() => RemoveItem(newItem));

The above code from AddNewItem method shows how to use lambda expression to specify

delegate with parameters. The RemoveCommand of item is relayed to method RemoveItem,

notice that the RemoveItem method need a parameter to specify the target item to be

removed. The lambda expression captures the newItem variable and when the execute delegate

is invoked the captured variable newItem is passed to RemoveItem method.

That's how we define the HelloCollectionBinding class, you can find the full source code in

example folder. To use collection binding, you need define the collection with ObservableList

and make the item class bindable. You can create a new item object, remove it from the list and

update the item property as usual, no special code is needed. The collection binding will handle

the view updates for you. The ICommand property is used by ButtonBinder which relay a button

click to the execute delegate.

Step B
Let’s make the UI for this tutorial. Create a new scene, like the first tutorial, we create a new

panel. Inside the panel, add a scroll view and two buttons. Adjust the position and the size,

rename the left button to “Button_Clear” and set its text to “Clear List”, and rename the right

button to “Button_AddNew” and set its text to “Add New Item”.

14

Next, we need create a view template for the item. View template is a Unity GameObject which

define the looks of the item. In this tutorial, we create a GameObject under Content node of

Scroll View. The following is the detail instructions:

1. Create an empty new GO under Content transform of scroll view, rename it to “Item”.
2. Add a layout element component to the Item, set preferred height to 60.
3. Under Item node, add a child image, stretch the image to full size. This is the

background of Item view.
4. Add a Text, renamed it to “Name” and adjust the position.
5. Add a button, change text to “Remove”.

After creating the view template, your UI will look like this

15

Next, we setup the content node, add a content size filter to Content node, set vertical fit to

preferred size. Add a vertical layout group to Content node, set spacing to 2, and set child force

expand to width. Now the scroll view is a vertical scroll view whose vertical size is controlled by

its child nodes.

Step C
Like the first tutorial, we need to add data binding components to the UI. Add DataContext and

DataContextRegister to Panel node, set required source to “HelloCollectionBinding”.

Add a ButtonBinder to Button_Clear, set path to “ClearCommand”.

16

Add a ButtonBinder to Button_AddNew, set path to “CreateCommand”.

In Scroll View node, add a CollectionBinder component. Set collection path to “ItemList”, which

is the source path of CollectionBinding object. Drag Item to view template, which is the UI

template for created Item object. Drag Content node to Container, which is the parent node of

all created item views.

Next, we set up data binding components for Item. Add a DataContext to Item node, which must

be on the Item node. The view template need a DataContext component to support data

binding.

The Item class contains two properties, the Name property and RemoveCommand property.

Find the Name node under Item node, add a TextBinder component, and set path to “Name”.

And add a ButtonBinder to Button node, set path to “RemoveCommand”.

Be careful about the path string, there are case sensitive.

17

Step D
We create a new GameObject, renamed it to HelloCollectionBinding, and add

HelloCollectionBinding component to it. We also need deactivate the Item node, because it is

used as in place prefab.

If everything is setup correctly, hit the play button will run the tutorial. If any error is reported

by the data binding, the log info will help you to find the error. Peppermint data binding will

report common errors such as invalid source path, etc.

How it works
The CollectionBinding manages the lifetime of each item view and the order of item view. If you

click the Add New Item button, a new item object is added to the list. The CollectionBinding will

create a new view GameObject from specified view template, and add it to the container node

as last child. Remove the item object from the list will cause CollectionBinding to remove its

associated view GameObject. CollectionBinding also handles the DataContext binding and

unbinding of each item. In each item view, the UI.Text get its content from the Name property,

and the button bind to its RemoveCommand property.

18

These two tutorials demonstrate the basic concepts of peppermint data binding framework. The

peppermint data binding includes samples and demos, you can learn more with these examples.

MVVM Overview
When you develop you game UI with data binding, MVVM will be the nature pattern to use.

Peppermint data binding framework was designed to make it easy to build game UI using the

MVVM pattern. The MVVM pattern is a big topic, in this document we just briefly introduce the

basic concept of this pattern. If you need more information you can search it on the internet.

The Model-View-ViewModel (MVVM) pattern helps you to cleanly separate the business and

presentation logic of your application from its user interface (UI).

In the MVVM pattern, the view encapsulates the UI and any UI logic, the view model

encapsulates presentation logic and state, and the model encapsulates business logic and data.

The view interacts with the view model through data binding, commands, and change

notification events. The view model queries, observes, and coordinates updates to the model,

converting, validating, and aggregating data as necessary for display in the view.

View
The view's responsibility is to define the structure and appearance of what the user sees on the

screen. Usually, this is the UI you created in Unity.

ViewModel
The view model in the MVVM pattern encapsulates the presentation logic and data for the view.

The view model implements properties and commands to which the view can data bind and

notifies the view of any state changes through change notification events.

The view model is a non-visual class, it typically does not directly reference the view. It

implements properties and commands to which the view can data bind. It notifies the view of

any state changes via change notification events via the INotifyPropertyChanged and

INotifyCollectionChanged interfaces.

Model
The model in the MVVM pattern encapsulates business logic and data. They are responsible for

managing the application's data and for ensuring its consistency and validity by encapsulating

the required business rules and data validation logic.

The model classes do not directly reference the view or view model classes and have no

dependency on how they are implemented. The model classes typically provide property change

notification events through the INotifyPropertyChanged interface. This allows them to be easily

data bound in the view.

19

If the model classes do not implement the INotifyPropertyChanged interface. In those cases, the

view model may need to wrap the model objects and expose the required properties to the

view. The values for these properties will be provided directly by the model objects. The view

model will implement the required interfaces for the properties it exposes so that the view can

easily data bind to them.

MVVM Pattern Notes
Peppermint data binding framework make MVVM pattern available for Unity. It enables a

developer-designer workflow. When the UI is not tightly coupled to the code, it is easy for

designers to modify the view.

MVVM is a set of guidelines, not rules. Sometimes you may prefer to manipulate view

component in your view model class, because it is easier or more efficient to manipulate the

view instead of using data binding. The framework provides ComponentGetter which use data

binding to set the component reference to your view model, you can use it to get any

component reference in the view. You should notice that this will introduces a dependency

between the view model and the view.

Editor Support
Peppermint data binding includes some useful editor utilities, which can make data binding

development more easily. You can find these tools in menu Tools/Data Binding.

Code Builder
The Code Builder editor window contains 3 code builders, you can click the toolbar button to

select a different code builder.

Bindable Property Code Builder

To make a class ready for data binding, it must implement the INotifyPropertyChanged

interface. Implementing the INotifyPropertyChanged interface on many classes can be repetitive

and error-prone because of the need to specify the property name in event argument.

Peppermint data binding provides 3 bindable base classes from which you can derive your

classes that is ready for data binding.

A derived class can raise the property change event in the set accessor by calling the

SetProperty method. The SetProperty method checks whether the backing field is different from

the value being set. If it is different, the backing field is updated and the PropertyChanged event

is raised.

public string StringValue
{
 get { return stringValue; }
 set { SetProperty(ref stringValue, value, "StringValue"); }

20

}

The above code example shows a standard bindable property. If the class has many bindable

properties, write these properties can be repetitive and error-prone. The Bindable Property

Builder is a tool that help you from doing the tedious work. It is a code generator that generates

code snippet for all bindable properties.

Quick guide

1. First you should define all fields in your bindable class.
2. Open the Code Builder Editor and click the Bindable Property tab, input the class name

in Class Type Name text field, and click the Load Class button. If the type is found, it will
display a list of members.

3. The default member list contains all private fields, if you want to include public fields,
enable the Include Public toggle. The name of generated property can be customized,
the default name just capitalize the first letter. If the member is not for binding, you can
uncheck the toggle to exclude it from the list. To select or deselect all members, just
click the first toggle.

4 Click the “Generate Code Snippet” button, the code builder will generate the code
snippet which contains only the bindable properties. The result is copied to system
clipboard/pasteboard.

5 Click the “Generate Code” button, the code builder will generate a C# source file to the
specified output directory, the file is named after the Class Type Name. Click the Open
Output Folder button will open the output folder in explorer/finder.

Bindable property builder parameters

• Output Directory
The output directory for generated source code. Default is Project/Code.

• Code Template

21

Template file for generated C# source.

• Class Type Name
The name of class. You can enter name or full name of your class, nested class is also
supported.

• Include Public
Indicate if public members are included in member list.

• Include Property
Indicate if properties are included in member list.

Bindable property usually wraps a backing field, but make a bindable property that wrap

another backing property is also supported. The following example defines a private property

stringValue, and a bindable property StringValue.

private string stringValue { get; set; }

public string StringValue
{
 get { return stringValue; }
 set { SetProperty(stringValue, value, x => stringValue = x, "StringValue"); }
}

Starting from Version 1.2.0, Peppermint data binding added support for CallerMemberName.

CallerMemberName is an attribute introduced in C# 5.0, which allows you to obtain the method

or property name of the caller to the method. If the target runtime is set to .Net 4.6, you can

avoid specifying the property name parameter when you call the SetProperty method. Code

snippet generated by code builder will also omit the property name string. Caution, if you switch

the runtime back to .Net 3.5, the code compilation will fail.

Implicit Converter Code Builder
Peppermint data binding only registers implicit converters with predefined types, so the runtime

and the AOT code builder only need to handle these types. The builder will check all implicit

operators in Unity.Engine assembly and your game assembly, and list all found types which

declared the operators. Note that, only two-way implicit operators are included.

Quick guide

If this is the first time you open the builder, the default settings will be created. The output

directory will be set to the directory of “ImplicitConverter.cs”.

First click the “Load Type” button, the list of found types will be displayed, then click the

“Generate Code” button, it will owerwrite the “ImplicitConverter.Code.cs” file. This code file

contains only one method “GetTypeNames”, which returns the generated type name array.

22

If your game assembly defines implicit operators and you want to use them in data binding, then

you should use this builder, otherwise the default “ImplicitConverter.Code.cs” file is ready for

use.

AOT Code Builder
Peppermint data binding supports Mono and IL2CPP scripting backend, and supports JIT and

AOT compilation. The underlying code use reflection to manipulate objects, e.g. get the property

info, get/set the property value. Update object using the reflection call is slow, so the

Peppermint data binding optimizes the code for property get and set by converting the

reflection call to delegate. Calling delegate is very fast and it use less memory compare to the

reflection call, it works well in JIT compilation, but need extra work for AOT compilation. To

support AOT compilation, you need add extra type registration code. The AOT Code builder will

generate the registration code for you automatically.

Quick guide

1. You need create a stub class, the class name and namespace can be anything, but it

must be a public partial class. You can find the stub class “AotGeneratedClass” defined

for the example project.

2. Open the AOT Code Builder editor windows, specify the “Output Directory”. For the

example project, we specify the parent folder of “AotGeneratedClass” as the output

directory, so the generated code file will be written to this folder.

3. Input “AotGeneratedClass” to the “Class Type Name” text field, which is the stub class

you created in step 1.

4. Click the “Generate AOT Code” button, it will generate the code for the partial class, and

output a new code file “AotGeneratedClass.Code.cs”.

5. If the output directory is a subdirectory of assets folder, Unity will automatically include

this script file. Otherwise you need copy the generated file to you project. Now the data

binding is ready for AOT compilation.

23

Let’s open the generated code, and see the code that the builder created for you.

The generated class contains two methods, the “private void RegisterProperties()” and the

“private void RegisterImplicitOperators()”. These method are private, it only used to make the

complier to generate proper execution code for the runtime.

These methods contains a series of function calls

AotUtility.RegisterProperty<object, object>();
AotUtility.RegisterProperty<object, bool>();
AotUtility.RegisterProperty<object, double>();
…

AotUtility.RegisterProperty<TObject, TValue> is a generic method, add a call to this method will

make the delegate creation available for any bindable property with the specified type. For

example, if we add a call to AotUtility.RegisterProperty<object, bool>(), all properties whose

type is bool will use the fast delegate call, if this method is not presented, the call is still

available, but it will use the reflection to set/get property value.

You do not need to register all bindable property types. You only need to register the value

types, such as primitive types, enum types and struct types. All reference types are handled by

type object, e.g. ICommand, AnimatorTrigger, ObservableList<T>, etc.

Notice that the method call is generated by scan the code assembly. It will include all properties

which call the SetProperty method and properties referenced by the NotifyPropertyChanged

method. It works well in most cases, but if the property is bound directly (without call

SetProperty method or not referenced by any NotifyPropertyChanged method), it will not be

recognized by the code scanning. You can associate the property with BindableProperty

attribute to let the builder knows it’s a binding property. Or you can add the type registration

code manually.

The method RegisterImplicitOperators is used to register implicit converters. It registers all

available implicit operators, the available types are generated by the implicit operator builder.

Don’t warry if you miss any type registration, the framework will log an error in the console

when the specified fast delegate can not to be created, which means you missed a type

registration for the specified type. The data binding still works, it will fall back to reflection call.

Note that, the AOT code is only for AOT compilation, it is not needed for JIT platform, such as

the Editor and Android Mono. The generated code will remain valid if no new value type is

added for data binding, so you don’t need to generate the AOT code every time the scripts are

updated.

AOT Code builder parameters

• Output Directory
The output directory for generated source code. Default is Project/Code.

• Code Template
Template file for generated C# source.

• Class Type Name

24

The name of target class. The class must be a partial class.

Code Check Tool
To detect source changes, your class needs to provide proper property changed notifications. If

your class is derived from bindable class, you should always use the property to update the

value. A common mistake is to set the backing field directly, so the event is not raised. Another

mistake is that the property name you specified is not correct, the following code example

shows these errors.

public int IntValue
{
 get { return intValue; }
 set { SetProperty(ref intValue, value, "IntValueA"); }
}

public void RaiseNotify()
{
 NotifyPropertyChanged("IntValueB");
}

This first error is the SetProperty method, the last parameter is an invalid property name. The

correct value is “IntValue”, but the actual value is “IntValueA”. The second error is the

NotifyPropertyChanged method, the parameter “IntValueB” is not a valid property name, and

the correct value is “IntValue”. These errors may occur when you rename the property, but the

property name string is not renamed.

These errors can be detected by runtime, but it has a big impact on performance. Instead, an

editor tool is provided for detection these errors. The Code Check Tool will do a static analysis of

the assembly, and verify all SetProperty and NotifyPropertyChanged method invocations.

Quick guide
Open the Code Check Tool, Click the “Verify Property Names” button. The tool will load and

verify all script assemblies, and log the error into console. The error reported by the above code

example is shown here.

Code Check Tool parameters

• Force Recompile

Force Unity to recompile the code and generate the assembly file.

• Verify Property Names

Call external tool to do the verification. Detected error will be redirected to Unity

console.

25

Note that the tool checks for errors by static analysis, it only supports literal string as property

name, and does not support variable.

Data Binding Graph
Data binding graph is a viewer which displays data binding components within a transform

node. To create a graph, you need to select a transform node from the hierarchy window, and

then click the Create Graph in toolbar.

The generated graph only contains 3 types of components: Binder, DataContext and

DataContextRegister, and their numbers are displayed in the right corner of the toolbar. The

component is displayed as a colored node: DataContext is blue, DataContextRegister is green

and Binder is yellow. The reference between components is displayed as a curve. The graph is

generated by searching the transform hierarchy using DFS, so the horizontal position represent

the depth in hierarchy, and the vertical position represent the order.

The graph window shows the outline of data binding components in selected view, which make

it clear and easy to locate the component. Click any node in the graph will select the component

in inspector. Hold middle mouse button in the blank area to drag the graph.

The source path of each binder is displayed in Binder node and the collected source path list is

also displayed in DataContext node. This information should be useful, for example, you can

verify if the view is compatible with your binding source, or to check if there is any unbound

properties, etc.

You can search the node in the graph. Input the text in “Find what” text field, and choose the

node type you are interested in. Click the “Find Next” button, if the text is found within any

node, the node is selected and the view will move so as to center on this node.

Data Binding Graph toolbar

• Create Graph

Create a graph for the selected node.

• Check Error

Check if there are unused DataContext components. The unused DataContext is a

DataContext that has no child binder.

• Find what

Input the text you want to find.

• Node Type Filter

Filter the search with specified node type.

• Find Next

26

Search for the next node.

• Enable Extra Info

Collect extra info when creating the graph.

• Flat Depth

Flatten graph node depth.

• Enable Drag

Enable Node dragging.

BindingManager Debug
BindingManager Debug is an editor window to show the runtime status of the BindingManager.

It only works when the game is playing.

The source section shows the source name, source type and source instance. If the source is

UnityEngine.Object, a button with its name is shown, you can click the button to select this

source, otherwise it is shown as a text label.

The data context section shows data context group information. Each group contains a required

source name, data context count, binding instance count, isBound and the data context instance

list. If this group is bound, the binding source instance is also shown, otherwise is shown as null.

The data context instance list includes all registered data context objects. Like the source

instance, if it’s shown as a button, you can click it to select this data context.

27

SpriteSet Builder
SpriteSet is just a collection of sprites. You can create a new SpriteSet asset by open the

“Assets/Create/Peppermint/Sprite Set” menu. You can drag any sprite you want to include to

the “Sprite List”. The name of the sprite will be used as a key for querying the sprite, so it must

be unique. The SpriteSet is used in SpriteNameConverter, which query the sprite by the sprite

name. To reduce the memory size, you can separate the sprites into different sets. For example,

you can create one set for in game icons, one set for menu icons and one set for

common/shared icons. A common way to separate the sprites is using directory, all sprites

belonging to the same set should be in the same directory.

SpriteSet Builder is a tool which can build the SpriteSet from specified directory. You only need

to config the build directories once, after the directories are updated, you and click the “Build

All”, all SpriteSet assets will be updated.

Quick guide
If this is the first time you open the SpriteSet builder, it will create a settings file in

“…/Peppermint DataBinding/Settings”.

First you need to specify the output directory for generated SpriteSet assets. The default

directory is “Assets/GUI/SpriteSet”.

Next you can add a config item to the list by click the “Add Item” button. In each item, you can

specify the sprite directory, the builder will search all sprites in this directory. Enable “Recursive”

will recursively search subdirectories for sprites.

28

Click the “Build” button will write the generated SpriteSet to the output directory, the last

directory name will be used as the name of generated SpriteSet asset. Click “Select” will open

the generated SpriteSet asset. You can remove any item by click the “Remove Item” button.

After you update the sprites, you simply click the “Build All” button to make sure all SpriteSet

assets are updated.

Built-in Binders

TextBinder
Bind the text property to a property of any type. If the format string is empty, the value's

ToString method is called, otherwise the specified format string is used. The source type can be

any type.

InteractableBinder
Bind Selectable targets to a Boolean property. The value control the interactable of specified

targets.

ColorBinder
Bind the color property of UI.Graphic to a color property. The source type must be Color.

29

FillAmountBinder
Bind the fillAmount property of Image to a float property.

ImageBinder
Bind the sprite property of Image to a string property. ImageBinder must specify a converter,

which convert a string to a sprite object. See SpriteNameConverter for more information.

RectTransformBinder
Bind the position properties of RectTransform to source properties. Specify the source path you

want to bind, empty path will be ignored.

AnimatorBinder
Bind the specified parameter of Animator to a property. It supports bool, int, float and trigger

parameter types. Parameter name is the associated parameter name in animator. If the

parameter type is trigger, the source type is AnimatorTrigger.

Animator will reset its parameters after deactivated, the AnimatorBinder will restore the

parameter in OnEnable method. Trigger is also restore if the event is called within the max

period.

30

ButtonBinder
Bind Button to an ICommand property. The source type must be ICommand. The Execute

method will be called if Button is clicked. The interactable of Button is controlled by the

CanExecute method.

The Execute method has no parameter, you can use closure to capture extra parameters when

you create the DelegateCommand.

CustomBinder
CustomBinder can bind any property of Unity Object.

Set the target object first, you can set it by dragging a unity object to target field. Then specify

the number of binding in configs. In each config, the path is the source path of the binding. The

target path will be shown as popup menu, you can choose the target property from the popup.

If the target is null, the target path will be shown as string field. The converter name is optional.

Create a binder for some rarely used property is impractical. CustomBinder is a configurable

binder, it can bind any property of Unity.Object.

The CustomBinder just do simple binding which update the target property if source property

changes. If the type does not match it will use the converter you specified or the default

converter. If you need more than just value copying, you should create your own binder.

31

CollectionBinder
CollectionBinder handles collection binding.

View template is the UI template for collection item, it must contains a DataContext component

to work with data binding. Collection path is the source path of collection binding. The container

is the parent of all created view, CollectionBinding does not handle any layout calculation, so it

can be used with any layout group. Collection view path is the source path of the created

CollectionView, if you do not use it just leave it empty. Enable use pool can improve the

performance, see ViewPoolManager for more information.

ObservableList<T> is the best collection type for collection binding. Although the source type

can be any IEnumerable type, such as T[], List<T>, these types do not implement

INotifyCollectionChanged interface, so the view will not get updated if new item is added or

deleted. If you know the collection is not changed after binding, you can bind to these types.

BoolSelector
Activate targets by comparing the boolean value of the source property.

If the value is true, targets are activated, otherwise inverseTarget are activated. Set inverse to

true will negate the value.

IntSelector
Activate targets by comparing the integer value of the source property.

Set the size of configs array first. In each config, specify the value to be tested and the targets to

be activated. The test function decides how the test is performed. When the value changes, the

32

IntSelector will test the value with each value in configs, the passed targets will be activated, the

failed targets will be deactivated.

EnumSelector
Activate targets by comparing the string value of the source property.

EnumSelector is a custom selector for enum type. To setup this selector, you need to specify the

enumType field first, which is the type name of the enum. If the type name is valid, the editor

will use enum popup for the value field, otherwise it will use string field instead.

The enumType field supports type name, partial type name, and namespace qualified type

name, e.g. "EnumA", "FooClass+EnumA", "Namespace.FooClass+EnumA". If the type name

conflict, you can try partial type name, and namespace qualified type name respectively.

The editor will search all script assemblies and all “UnityEngine” assemblies.

StringSelector
Activate targets by comparing the string value of the source property.

The configuration is similar to IntSelector and the testing function is string equality.

StringSelector is a general selector, the source type can be any type, and the default converter

will handle the convention for you.

33

You can bind to Enum type, just set the value to the name of enum constant. You can also bind

to Boolean type and set value to True or False.

ColorSetter
ColorSetter set the color of UI.Graphic object by comparing the string value of the source

property.

The configuration is similar to StringSelector. If the value matches the given config, the color

from the matched config will be used, otherwise the default color is used.

CustomSetter
CustomSetter can be used to set any property of Unity Object.

The configuration is similar to StringSelector. If the value matches the given config, the style is

applied to target object.

You should specify the target first. The style contains a group of StyleSetter, and in each

StyleSetter you can choose the target path from popup menu. The value type is automatically

selected based on the property type, you only need to specify the value.

If the target is null, the target path will be shown as string field and the value type must be

manually setup.

34

ComponentGetter
Gets component from the view.

ComponentGetter creates a one-way to source binding. Once bound the source gets the value

from the target, and the source value is set to null if unbound. You can set the target by

dragging a component to target field.

ToggleBinder
Binds Toggle to a boolean property. ToggleBinder is a two-way binder, it get the value from the

source, and update the source if Toggle's value changes.

InputFieldBinder
Binds InputField to a string property. InputFieldBinder is a two-way binder, it get the text value

from the source (string type), and update the source if InputField's value changes.

Text path is the source path of the text, and the update source trigger decides when to update

the source. If you need to validate input characters, specify validate input path, otherwise leave

it empty. The source type of validate input is a delegate, which must be compatible with the

InputField.OnValidateInput delegate.

35

DropdownBinder
Bind Dropdown to an int property. DropdownBinder is a two-way binder, it get the value from

the source (int type), and update the source if Dropdown's value changes.

The value path must specified, it's the index of currently selected option. String options path is

optional, if specified, a list of string will be used as options.

SliderBinder
Bind Slider to a float property. SliderBinder is a two-way binder, it get the value from the source

(float type), and update the source if Slider's value changes.

You must specify value path, which is the source path of Slider's value. The min value path and

max value path is optional. If specified, it control the min and max value of the Slider.

ScrollbarBinder
Bind Scrollbar to a float property. ScrollbarBinder is a two-way binder, it get the value from the

source (float type), and update the source if Scrollbar's value changes.

36

ScrollRectBinder
Bind ScrollRect to a Vector2 property. ScrollRectBinder is a two-way binder, it get the value from

the source (Vector2 type), and update the source if ScrollRect's value changes.

TextMultiBinder
Bind the text property to multi properties.

First set the size of configs, and then set the target path in each entry. If the format string is

empty, string.Concat method is used to concatenate all string values, otherwise the specified

format string is used. The source type can be any type.

ListDynamicBinder
ListDynamicBinder is a collection binder which binds to IList object.

Unlike the CollectionBinder, it only creates and binds the visible items of the list. It requires a

dynamic controller to calculate the visible items and handle the layout. It's very useful for scroll

views with a large amount of items, e.g. leaderboard.

There are two built-in dynamic controllers:

• VerticalLayoutGroupController (For vertical scroll view)

• HorizontalLayoutGroupController (For horizontal scroll view)

37

Here are the steps for set up a vertical dynamic scroll view.

1. Create a new “Scroll View”, add a ListDynamicBinder and VerticalLayoutGroupController

to this GameObject.

2. Add a child GameObject “VerticalGroup” under “Content”. Set the anchor to top-stretch

and set the pivot to top-center. (For horizontal scroll view, set the anchor to stretch-left

and set the pivot to middle-left)

3. Add a VerticalLayoutGroup to “VerticalGroup”, disable the “Height” of “Child Force

Expand”.

4. Add a ContentSizeFitter to “VerticalGroup”, set “Vertical Fit” to “Preferred Size”.

5. On “Scroll View” node, drag the “VerticalGroup” to the “Layout Group” field of

VerticalLayoutGroupController.

6. Set the parameters of ListDynamicBinder, most of the parameters are the same as

CollectionBinder. The only difference is the “Container” field. You should set it to the

“VerticalGroup” node, instead of “Content” node.

7. Add a LayoutElement to the view template prefab, enable the “Preferred Height” and

set the value.

38

For horizontal dynamic scroll view, the steps are the same. Simply change the “Vertical” to

“Horizontal”, and change the “Height” to “Width”.

If “Use Pool” of ListDynamicBinder is enabled, the binder will get the pool from

ViewPoolManager. If “Use Pool” is disabled, the binder will create a local view pool instead.

Most of the time, the pool contains only one view object, so you can disable “Use Pool” to

enable the automatically managed local view pool.

How it works

When the collection or the scroll position changes. The dynamic controller calculates the visible

items based on the viewport size and the content position. The binder creates the visible items,

and attach them to "VerticalGroup". The VerticalLayoutGroup component will do the actual

layout calculation. Next, the dynamic controller will calculate and set the vertical position for

the "VerticalGroup".

CollectionMultiViewBinder
CollectionMultiViewBinder is an extended version of CollectionBinder. It supports multiple view

templates.

"View Selector Path" is the source path for the view selector. It's a delegate that will be called

when the view is created. You can set different view templates in the configs. In each config, you

must specify a view template, and set a name tag (optional). When the delegate is called, you

can decide which view template to be used based on the item object. If the "View Selector Path"

is empty, it will use default type name matching.

You can also specify "Default ViewTemplate", it will be used if there is no matching view

template.

39

Extensions
Peppermint data binding can be easily integrated with third-party add-ons. Starting from version

1.3.0, peppermint data binding will include extension packages in “Peppermint

DataBinding/Extensions” folder. You can import extension packages to enable third-party add-

on support. Before importing the extension package, make sure the required third-party add-on

is already imported.

NGUI
NGUI extension includes binders to support NGUI’s built-in controls, such as UILabelBinder,

UIToggleBinder, etc. It also includes new collection binders for NGUI. Tested with NGUI 3.11.4.

Most control binders are similar to their uGUI counterpart, and they have the same parameters.

You can check the document and examples to learn how to set these parameters.

To set up collection binding in NGUI, you must use the new UICollectionBinder. Unlike the

CollectionBinder used in uGUI, the UICollectionBinder requires an ICollectionController to

update the view after collection changes. You can use the built-in

UIScrollViewCollectionController, or create your own as needed.

To set up list dynamic binding, you still use the ListDynamicBinder, and then add the

IDynamicController designed for NGUI. The UIGridDynamicController uses UIGrid to do the

layout calculation, which supports horizontal and vertical arrangement.

In the examples folder, it contains new examples that demonstrates how to set up these new

binders. Note that these examples reference NGUI’s built-in assets and will not work if the

referenced assets are missing.

40

TextMesh Pro
TextMesh Pro extension includes binders to support TMP’s built-in controls, such as

TMP_TextBinder, TMP_InputFieldBinder, TMP_DropdownBinder, etc. Tested with TextMesh Pro

1.2.2 and Unity 5.5.0f3.

Upgrade Guide
To upgrade Peppermint data binding to its latest version, I recommend following these steps.

1. Back up your project first.

2. Load your project in Unity and create a new scene.

3. Delete the old "Peppermint DataBinding" folder (except the "Peppermint

DataBinding/Settings" folder).

4. Import the latest package from asset store.

Setup assembly definition files
Starting from version 1.4.0, Peppermint Data Binding fully support assembly definition files. If

you are using Unity 2017.3 or later version, you can setup assembly definition files to reduce

compilation time. Here is a quick guide.

1. Add an assembly definition file “DataBinding.asmdef” in “Peppermint

DataBinding/Scripts/DataBinding” folder and set “Platforms” to “Any Platform”.

2. Add another assembly definition file “DataBinding.Editor.asmdef” in “Peppermint

DataBinding/Scripts/Editor/DataBinding”. Set “Platforms” to “Editor” only and add the

assembly definition file you created in the first step to its “References” list.

3. Set up assembly definition file for your scripts folder and add the “DataBinding” to its

References list.

41

If you need more information about assembly definition files, you could check Unity document

for details.

Contact
For any questions about this framework, feel free to contact me at:

E-mail: peppermint-unity@hotmail.com

mailto:peppermint-unity@hotmail.com

	Features
	Data Binding Overview
	Data Binding Concepts
	Direction of the Data Flow
	OneWay
	TwoWay
	OneWayToSource

	Data Conversion
	Collection Binding

	Folder Structure
	Class Overview
	Binder
	BindingManager
	DataContext
	DataContextRegister
	CollectionView
	Commands
	Converter

	Tutorial
	Hello Data Binding
	Step A
	Step B
	Step C
	Step D
	How it works
	Data binding vs no data binding

	Hello Collection Binding
	Step A
	Step B
	Step C
	Step D
	How it works

	MVVM Overview
	View
	ViewModel
	Model
	MVVM Pattern Notes

	Editor Support
	Code Builder
	Bindable Property Code Builder
	Quick guide
	Bindable property builder parameters

	Implicit Converter Code Builder
	Quick guide

	AOT Code Builder
	Quick guide
	AOT Code builder parameters

	Code Check Tool
	Quick guide
	Code Check Tool parameters

	Data Binding Graph
	Data Binding Graph toolbar

	BindingManager Debug
	SpriteSet Builder
	Quick guide

	Built-in Binders
	TextBinder
	InteractableBinder
	ColorBinder
	FillAmountBinder
	ImageBinder
	RectTransformBinder
	AnimatorBinder
	ButtonBinder
	CustomBinder
	CollectionBinder
	BoolSelector
	IntSelector
	EnumSelector
	StringSelector
	ColorSetter
	CustomSetter
	ComponentGetter
	ToggleBinder
	InputFieldBinder
	DropdownBinder
	SliderBinder
	ScrollbarBinder
	ScrollRectBinder
	TextMultiBinder
	ListDynamicBinder
	CollectionMultiViewBinder

	Extensions
	NGUI
	TextMesh Pro

	Upgrade Guide
	Setup assembly definition files
	Contact

